Skip to main content

Enormous sky survey creates the most accurate map yet of universe’s dark matter

Ten areas in the sky were selected as “deep fields” that the Dark Energy Camera imaged several times during the survey, providing a glimpse of distant galaxies and helping determine their 3D distribution in the cosmos. The image is teeming with galaxies — in fact, nearly every single object in this image is a galaxy. Some exceptions include a couple of dozen asteroids as well as a few handfuls of foreground stars in our own Milky Way.
Ten areas in the sky were selected as “deep fields” that the Dark Energy Camera imaged several times during the survey, providing a glimpse of distant galaxies and helping determine their 3D distribution in the cosmos. The image is teeming with galaxies — in fact, nearly every single object in this image is a galaxy. Some exceptions include a couple of dozen asteroids as well as a few handfuls of foreground stars in our own Milky Way. Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA Acknowledgments: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), M. Zamani (NSF’s NOIRLab) & D. de Martin (NSF’s NOIRLab)

We can’t see it, but we know it’s there: The mystery of dark matter has been puzzling astronomers since the 1930s. We know that ordinary matter makes up just 5% of all that exists in the universe, with the remaining 68% being made up of dark energy and 27% of dark matter. But the exact nature of this matter and energy remains a subject of debate.

To learn more, a project called the Dark Energy Survey (DES) has observed more than 226 million galaxies covering one-eighth of the sky, collecting data that can provide the most precise measurements yet of what the universe is made of and how it is expanding. The data from the project’s first three years is now being released in 29 new scientific papers.

“Most of the matter in the Universe is dark matter,” explained co-lead author of one of the studies Niall Jeffrey, of École Normale Supérieure and University College London. “It is a real wonder to get a glimpse of these vast, hidden structures across a large portion of the night sky. These structures are revealed using the distorted shapes of hundreds of millions of distant galaxies with photographs from the Dark Energy Camera in Chile.”

Jeffrey’s group analyzed the DES data using artificial intelligence methods to create a map of dark matter as seen from the southern hemisphere. The final map covers around a quarter of the sky seen from this hemisphere:

A map of the southern hemisphere sky, with the region of dark matter mapped by DES shown in pink.
A map of the southern hemisphere sky, with the region of dark matter mapped by DES shown in pink. N. Jeffrey/Dark Energy Survey collaboration

“In our map, which mainly shows dark matter, we see a similar pattern as we do with visible matter only– a web-like structure with dense clumps of matter separated by large empty voids,” Jeffrey explained. “Observing these cosmic-scale structures can help us to answer fundamental questions about the Universe.”

The researchers were able to map the dark matter by seeing the way that its gravity distorts light, in a technique called gravitational lensing. From these distortions, they could estimate how much dark matter must be present in a particular region. This work flattens the 3D universe into a 2D map and so for the next phase of investigation, the researchers want to build up a 3D view of the dark matter.

The data gathered by DES can also tell us about the big questions in cosmology, like how the universe grew after the Big Bang and how “smooth” the universe is — meaning how much matter clumps together. In fact, the smoothness calculated by the project seems to be a little off from what current models would have predicted. Researchers in the project say they want to collect more data to understand whether there is a difference in smoothness found between the DES survey and analysis of the leftover radiation from the Big Bang, called the cosmic microwave background (CMB).

“It would be very exciting to find contradictions between galaxy surveys like DES and analyses of the CMB, as they would provide hints of new physics,” said Pablo Lemos, co-author of another paper. “This observed difference in the clustering of matter could be one such contradiction, but we will need more data to confirm it.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Spooky cobwebbed Hubble image helps investigate dark matter
Hundreds of small galaxies appear across this view. Their colours vary. Some are shades of orange, while others are white. Most appear as fuzzy ovals, but a few have distinct spiral arms. There are also many thin, long, orange arcs that curve around the centre of the image, where there is a prominent orange glow.

With Halloween coming up tomorrow, the Hubble Space Telescope team is celebrating by releasing a new Hubble image showing the dark cobwebs of galaxy cluster Abell 611. Located an incredible 3.2 billion light-years away, this view shows hundreds of galaxies that are bound together by gravity into one enormous structure.

Taken using Hubble's Advanced Camera for Surveys and Wide Field Camera 3 instruments, the image combines both visible light and infrared observations.

Read more
See the stunning, star-forming Lobster Nebula in Dark Energy Camera image
This image, taken by astronomers using the US Department of Energy-fabricated Dark Energy Camera on the Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory, a Program of NSF’s NOIRLab, captures the star-forming nebula NGC 6357, which is located 8000 light-years away in the direction of the constellation Scorpius. This image reveals bright, young stars surrounded by billowing clouds of dust and gas inside NGC 6357, which is also known as the Lobster Nebula.

One of the biggest mysteries in cosmology today is what exactly the universe is made up of. We know that all of the ordinary matter in the universe makes up just 5% of the total universe, with the rest being made up of theoretical constructs: 27% of the universe is dark matter, and 68% is dark energy. We know that dark matter and dark energy must exist because we see their effects, but neither has ever been measured directly.

So to learn more about dark energy, an international large-scale survey called the Dark Energy Survey was launched to map out hundreds of millions of galaxies. Between 2013 and 2019 a collaboration of researchers used a purpose-built tool called the Dark Energy Camera (DECam) on the Victor M. Blanco Telescope located in the Chilean Andes for these observations. But since the survey has come to an end, the Dark Energy Camera hasn't been idle -- it's now used for research into a variety of astronomical topics, and it was recently used to capture this stunning image of the Lobster Nebula.

Read more
See two galaxies in the process of merging in this Dark Energy Camera image
The interacting galaxy pair NGC 1512 and NGC 1510 take center stage in this image from the Dark Energy Camera, a state-of-the art wide-field imager on the Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory, a Program of NSF’s NOIRLab. NGC 1512 has been in the process of merging with its smaller galactic neighbor for 400 million years, and this drawn-out interaction has ignited waves of star formation and warped both galaxies.

A beautiful image showing two interacting galaxies has been captured by a camera originally designed to study dark energy. The two galaxies in this image, NGC 1512 and NGC 1510, are part of an interacting pair that have been in the process of merging together for 400 million years. As the two come closer, drawn together by gravity, the forces are accelerating star formation and many new stars are being born.

The interacting galaxy pair NGC 1512 and NGC 1510 take center stage in this image from the Dark Energy Camera, a state-of-the-art wide-field imager on the Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory, a Program of NSF’s NOIRLab. Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA Image processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), J. Miller (Gemini Observatory/NSF’s NOIRLab), M. Zamani & D. de Martin (NSF’s NOIRLab)

Read more