The Future Is Here
We may earn a commission from links on this page

Four Generations of Lemurs Have Refused to Hibernate, Until Now

One of the Duke Lemur Center’s fat-tailed dwarf lemurs
One of the Duke Lemur Center’s fat-tailed dwarf lemurs
Photo: David Haring, Duke Lemur Center

Scientists at the Duke Lemur Center in North Carolina say their fat-tailed dwarf lemurs went into hibernation for the first time ever in captivity last winter, mimicking the process their counterparts in the wild undergo regularly. By studying this process up close in our primate relative, the researchers also hope to better understand the human body and how it can be safely slowed down during times of need, such as during certain medical procedures.

Fat-tailed dwarf lemurs (Cheirogaleus medius), like all other species of lemurs, are native to Madagascar. In the wild, they bulk up on food during the summer, then hibernate anywhere from three to seven months. This means their body temperature drops sharply, as does their metabolism (like other hibernators, though, they might have brief periods of activity and even sleep). That makes these primates, which are distinct from monkeys and apes, our closest relatives known to engage in hibernation.

Advertisement

In captivity, though, the lemurs are much more active at all times of the year. During the winter, they may experience torpor—a short-term period of dormancy—for a day at a time, but not anything like the extended hibernation they go through in the wild. The lemur population at the Duke Lemur Center has been captive for at least four generations, since the 1960s, and it seemed possible they had lost the ability to hibernate. But the researchers theorized that their lemurs could still go into hibernation, so long as their living conditions were made to more closely resemble what they would experience in the wild.

Advertisement

Their findings, published in Scientific Reports last week, seem to show that they were right. The team included eight lemurs in their experiment, the bulk of which took place between October 2019 and February 2020. Throughout the year, they slowly adjusted the lights in their living space to mimic the longer summer days and fed the lemurs more generously.

Advertisement

Once fall arrived, the lemurs were moved into fake tree hollows inside a temperature-controlled space where they could see and smell each other but were physically isolated. Then they turned down the lights and temperature over time. This meant 9.5 hours of light during the shortest days, rather than the 14.5 hours seen at peak summer, while the temperature dropped from 77 degrees Fahrenheit to a range of 50 to 59 degrees Fahrenheit. The lemurs were offered a typical zoo diet at first, but once the rooms got chillier, they were only given food for every 24 hours of wakeful activity.

By February, the lemurs had spent about 70% of their time on average in torpor. At their hibernating peak, the lemurs spent up to 11 days nearly motionless. Unlike their wild counterparts, they did still sometimes move around and eat occasionally. After the experiment was over, the lemurs had lost around 22% to 35% of their body weight, but they otherwise seemed healthy.

Advertisement

“Everyone did great! The two females who finished the study last year went on to have offspring later in 2020,” lead author Marina Blanco told Gizmodo in an email.In fact, one of the females had a singleton last year after the hibernation season, a beautiful female who broke the record as the fastest growing dwarf lemur at the Center.”

The experiment went so well that the team carried it out again this winter from October 2020 to March 2021. This time, they tweaked the lemurs’ diet beforehand to help ensure that they would store fat for use during hibernation (as their name implies, it’s the tail that’s supposed to act as a storage container for their bodies in the winter). Both mother and daughter took part in this new study, and according to Blanco, they hibernated together most of the time. 

Advertisement

It’s likely that reawakening these lemurs’ hibernation power will be better for them in the long run. The authors note that hibernation may very well account for their relatively longer life spans compared to other similarly sized animals (the oldest known lemur, also from the Duke Lemur Center, died at age 29). And while the lemurs at the center do appear to be healthy for the most part, the authors speculate that the lack of hibernating could contribute to health problems like excess weight, diabetes, and cataracts in some of their oldest lemurs.

We hope that by facilitating hibernation in these lemurs, we are ‘renaturalizating’ conditions in captivity to maximize their physiological potential,” Blanco said.

Advertisement

Studying the ins-and-outs of lemur hibernation in a controlled setting might also benefit humans and other animals. Scientists have long wanted to understand hibernation better and how it could be safely replicated in people. Everything from emergency surgeries to space travel could be made easier if people could hibernate at a moment’s notice and wake up later without harm. And because this process deeply involves our metabolism, figuring it out might also give us insights into metabolic disorders like diabetes or even the very nature of aging.

Advertisement

The researchers plan to keep studying hibernation in their lemurs by using more extensive but non-invasive monitoring methods, including how their bodies can withstand spikes in sugar and fat metabolism without harming themselves.

This article has been updated with comments from one of the study’s authors.