Skip to main content

Just one instrument mode left and the James Webb Telescope will be ready for science

The countdown is on for the release of the first science images from the James Webb Space Telescope, scheduled for July 12. But before full science operations begin, each of Webb’s four instruments has to be calibrated and checked in its various modes to ensure it’s ready to collect data. This week, the Mid-Infrared instrument (MIRI) has completed its checks and NASA has announced that it is ready for science.

Unlike Webb’s other three instruments which operate in the near-infrared range, MIRI operates in the mid-infrared which means it has some peculiarities. It was the last instrument to reach its operating temperature because its silicon detectors have to be so cold to work — at a temperature of less than 7 degrees Kelvin. In order to control its temperature exactly, the MIRI instrument has both a heater and a cooler. MIRI reached its operating temperature in April this year, and since then  it ha been through an extensive calibration process and engineers have confirmed that its imaging, its low- and medium-resolution spectroscopy, and finally its coronagraphic imaging modes are all ready to go.

MIRI Flight Instrument Undergoing Alignment Testing
MIRI, ( Mid InfraRed Instrument ), flight instrument for the James Webb Space Telescope, JWST, during ambient temperature alignment testing in RAL Space’s clean rooms at STFC’s Rutherford Appleton Laboratory, 8th November 2010. Science and Technology Facilities Council (STFC)

“We are thrilled that MIRI is now a functioning, state-of-the-art instrument with performances across all its capabilities better than expected,” said MIRI European principal investigator Gillian Wright and MIRI science lead George Rieke in a statement. “Our multinational commissioning team has done a fantastic job getting MIRI ready in the space of just a few weeks. Now we celebrate asll the people, scientists, engineers, managers, national agencies, ESA [European Space Agency], and NASA, who have made this instrument a reality as MIRI begins to explore the infrared universe in ways and to depths never achieved before.”

You can track the progress of James Webb getting its four instruments ready for their seventeen modes on the James Webb tracker on NASA’s website. Currently, sixteen of the modes are ready for science, with just the coronagraphy mode of the NIRCam instrument left to be signed off. Once this is done, Webb will be ready for science operations, looking at exoplanet atmospheres, finding some of the earliest galaxies in the universe, and much more.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures a unique view of Uranus’s ring system
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope shows the planet and its rings in new clarity. The Webb image exquisitely captures Uranus’s seasonal north polar cap, including the bright, white, inner cap and the dark lane in the bottom of the polar cap. Uranus’ dim inner and outer rings are also visible in this image, including the elusive Zeta ring—the extremely faint and diffuse ring closest to the planet.

A festive new image from the James Webb Space Telescope has been released, showing the stunning rings of Uranus. Although these rings are hard to see in the visible light wavelength -- which is why you probably don't think of Uranus as having rings like Saturn -- these rings shine out brightly in the infrared wavelength that Webb's instruments operate in.

The image was taken using Webb's NIRCam instrument and shows the rings in even more detail than a previous Webb image of Uranus, which was released earlier this year.

Read more
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
James Webb provides a second view of an exploded star
A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more