Skip to main content

Could supermassive black holes be formed from dark matter?

Artist’s impression of a spiral galaxy embedded in a larger distribution of invisible dark matter, known as a dark matter halo (coloured in blue)
Artist’s impression of a spiral galaxy embedded in a larger distribution of invisible dark matter, known as a dark matter halo (colored in blue). Studies looking at the formation of dark matter halos have suggested that each halo could harbor a very dense nucleus of dark matter, which may potentially mimic the effects of a central black hole, or eventually collapse to form one. ESO / L. Calçada, Attribution (CC BY 4.0)

At the heart of almost every galaxy lurks a monster — a supermassive black hole millions or even billions of times the mass of the sun. Astronomers are still trying to figure out how these enormous beasts form, and whether they are formed before or after the galaxies which surround them. Now, new research suggests that their formation could be related to another of astronomy’s great mysteries: Dark matter.

Most black holes form when large stars collapse to a point at which they have a very large amount of mass in a small volume. But using modeling, a team has investigated what would happen in a stable galactic core made of dark matter, surrounded by a dark matter halo. They found that the center of the dark matter region could become so dense that it would collapse into a supermassive black hole.

Dark matter halos are inferred to exist around galaxies, and even though they are invisible to us they seem to contain more mass than the regular matter of a typical galaxy. But to collapse and form a supermassive black hole, the study found that the halo would need to be of a certain size — larger than those found around dwarf galaxies, for example.

“This model shows how dark matter halos could harbor dense concentrations at their centers, which may play a crucial role in helping to understand the formation of supermassive black holes,” said Carlos R. Argüelles, lead author, in a statement. “Here we’ve proven for the first time that such core–halo dark matter distributions can indeed form in a cosmological framework, and remain stable for the lifetime of the Universe.”

The model also suggests that this method would allow black holes to form quickly, even before the galaxies that surround them. This goes against a current theory that says that galaxies likely formed first in the early universe, and then supermassive black holes formed inside them.

This could help to explain how the earliest supermassive black holes formed in the early universe, when they weren’t many stars around, Argüelles said: “This new formation scenario may offer a natural explanation for how supermassive black holes formed in the early Universe, without requiring prior star formation or needing to invoke seed black holes with unrealistic accretion rates.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Record-breaking supermassive black hole is oldest even seen in X-rays
Astronomers found the most distant black hole ever detected in X-rays (in a galaxy dubbed UHZ1) using the Chandra and Webb telescopes. X-ray emission is a telltale signature of a growing supermassive black hole. This result may explain how some of the first supermassive black holes in the universe formed. This composite image shows the galaxy cluster Abell 2744 that UHZ1 is located behind, in X-rays from Chandra (purple) and infrared data from Webb (red, green, blue).

Astronomers recently discovered the most distant black hole ever observed in the X-ray wavelength, and it has some unusual properties that could help uncover the mysteries of how the largest black holes form.

Within the center of most galaxies lies a supermassive black hole, which is hundreds of thousands or even millions or billions of times the mass of our sun. These huge black holes are thought to be related to the way in which galaxies form, but this relationship isn't clear -- and how exactly supermassive black holes grow so massive is also an open question.

Read more
See the stunning first images taken by the dark matter-hunting Euclid telescope
The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars.

The European Space Agency (ESA) has released the first full-color images taken by Euclid, a space telescope that was launched earlier this year to probe the mysteries of dark matter and dark energy. Euclid will image a huge area of the sky to build up a 3D map of the universe, helping researchers to track the dark matter that is clustered around galaxies and the dark energy that counteracts gravity to push galaxies apart.

The Horsehead Nebula, also known as Barnard 33, is part of the Orion constellation. About 1,375 light-years away, it is the closest giant star-forming region to Earth. With Euclid, which captured this image, scientists hope to find many dim and previously unseen Jupiter-mass planets in their celestial infancy, as well as baby stars. ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi; CC BY-SA 3.0 IGO

Read more
This peculiar galaxy has two supermassive black holes at its heart
The billion-year-old aftermath of a double spiral galaxy collision, at the heart of which is a pair of supermassive black holes.

As hard as it is to picture, with billions or even trillions of galaxies in the universe, entire galaxies can collide with each other. When that happens, one galaxy can be destroyed or the two can merge into one. But even in the case of galaxy mergers, the effects of the collision are often visible for billions of years afterward.

That's shown in a recent image taken by the Gemini South observatory, which shows the chaotic result of a merger between two spiral galaxies 1 billion years ago.

Read more