Skip to main content

Incredible treatment allows paralyzed mice to walk again

A new treatment is giving hope that paralysis from spinal cord damage could one day be reversible. Researchers from Germany’s Ruhr-University Bochum were able to get paralyzed mice to walk again after stimulating their brains to produce a particular protein, which was then spread to other areas of the nervous system.

Spinal cord damage is extremely difficult to treat because it can sever the nerves running from the brain to other parts of the body like the limbs, which leaves people paralyzed. The fibers in the spinal cord can’t repair themselves, so damage to them is typically permanent.

To address this challenge, the researchers used a treatment involving the protein hyper-interleukin-6 (hiL-6), which makes these nerve cells regenerate and grow back. The protein doesn’t occur in nature — it has to be genetically engineered — but once available, it can be used to stimulate nerve cells to regrow and repair.

The research team showed for the first time that this protein can reverse paralysis in mice. To make the hiL-6, they stimulated the mice’s brains to produce the protein, which was then spread to other brain areas and nerve cells. By stimulating the production of the protein in one brain area, it could start nerve cells in the spinal cord regenerating.

“Ultimately, this enabled the previously paralyzed animals that received this treatment to start walking after two to three weeks,” said lead researcher Dietmar Fischer in a statement. “This came as a great surprise to us at the beginning, as it had never been shown to be possible before after full paraplegia.”

Two to three weeks after treatment, the previously paralyzed mice began to walk.
Two to three weeks after treatment, the previously paralyzed mice began to walk. Lehrstuhl für Zellphysiologie

The next step is for the team to research whether this method can be used alongside other existing treatments to produce hiL-6 more effectively. And they also want to know whether the treatment can be used if a spinal cord injury occurred only recently, in the last few weeks. “This aspect would be particularly relevant for application in humans,” said Fischer. “We are now breaking new scientific ground. These further experiments will show, among other things, whether it will be possible to transfer these new approaches to humans in the future.”

The research is published in the journal Nature Communications.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
SWAT team’s Spot robot shot multiple times during standoff
Spot, a robot dog.

A Boston Dynamics’ Spot robot deployed by the Massachusetts State Police (MSP) was shot during a standoff in Cape Cod, Massachusetts.

It’s believed to be the first time that the robot helper has taken a bullet during active duty, and it highlights how the machine can help keep law enforcement out of harm’s way during challenging situations.

Read more
Microsoft Edge is slowly becoming the go-to browser for PC gamers
microsoft edge chromium to roll out automatically soon chrome

Microsoft Edge is already jam-packed with features that other web browsers don't have, but a new one might well help your PC run faster while gaming. The default Windows web browser now has the option to limit the amount of RAM it uses, helping you prioritize RAM access to other applications or games. The feature is currently being tested in the Canary version of Microsoft Edge and could roll out to everyone if Microsoft deems it useful enough and gets quality feedback.

Spotted by X (formerly Twitter) user Leopeva64, the setting for this new feature is buried in the System and Performance section of the latest Canary version of Microsoft Edge. It is being rolled out gradually, so not everyone has it yet, but it gives two options for controlling your PC resources.

Read more
How Intel and Microsoft are teaming up to take on Apple
An Intel Meteor Lake system-on-a-chip.

It seems like Apple might need to watch out, because Intel and Microsoft are coming for it after the latter two companies reportedly forged a close partnership during the development of Intel Lunar Lake chips. Lunar Lake refers to Intel's upcoming generation of mobile processors that are aimed specifically at the thin and light segment. While the specs are said to be fairly modest, some signs hint that Lunar Lake may have enough of an advantage to pose a threat to some of the best processors.

Today's round of Intel Lunar Lake leaks comes from Igor's Lab. The system-on-a-chip (SoC), pictured above, is Intel's low-power solution made for thin laptops that's said to be coming out later this year. Curiously, the chips weren't manufactured on Intel's own process, but on TSMC's N3B node. This is an interesting development because Intel typically sticks to its own fabs, and it even plans to sell its manufacturing services to rivals like AMD. This time, however, Intel opted for the N3B node for its compute tile.

Read more