Funky Discrepancy Deepens Dark Matter Mystery

We may earn a commission from links on this page.
Hubble image showing galaxy cluster MACSJ 1206, with individual galaxies shown inset, and warped by an astronomical effect known as gravitational lensing.
Hubble image showing galaxy cluster MACSJ 1206, with individual galaxies shown inset, and warped by an astronomical effect known as gravitational lensing.
Image: NASA, ESA, G. Caminha (University of Groningen), M. Meneghetti (INAFObservatory of Astrophysics and Space Science of Bologna), P. Natarajan (Yale University), CLASH team

New research, in which empirical data failed to jibe with theoretical calculations, shows just how much physicists still have to learn about dark matter.

A mismatch between astronomical data and computer simulations has left a team of scientists scratching their heads, in what is a frustrating case of reality not agreeing with theory.

Advertisement

The research team took measurements of several galaxy clusters to investigate the presence of dark matter. Annoyingly, this data, when compared to theoretical computer models, did not agree. Writing in their ensuing Science study, the authors “suggest that systematic issues with simulations or incorrect assumptions about the properties of dark matter could explain our results.”

Advertisement

In other words, it’s back to the drawing board.

Far more stuff exists in the universe than we can actually see, as evidenced by the way distant objects interact with each other. This missing stuff is called dark matter, and, despite constituting the vast majority of matter in the universe, it doesn’t emit, absorb, or reflect light. But it’s pretty important stuff for something so elusive, as it binds stars together inside of galaxies, while chaining galaxies together to form clusters.

Advertisement

And indeed, galaxy clusters, in which thousands of galaxies are cloistered together, serve as distant laboratories for studying dark matter. Galaxy clusters are massive repositories of dark matter owing to their tremendous gravitational influence. Blobs of the stuff in the form of dark-matter halos can be indirectly detected loitering around galaxy clusters, as well as individual galaxies parked within.

Advertisement

Of course, astronomers can’t actually see these dark-matter halos, but they can see the way in which these invisible blobs can bend light. This phenomenon, known as gravitational lensing, distorts and repositions background objects from our line of sight. Gravitational lensing is pretty cool because it allows astronomers to see, for example, a galaxy that would otherwise be obscured by a closer one in front of it. Importantly, the more dark matter that’s around, the greater the observed lensing effect.

For the new study, Yale astrophysicist Priyamvada Natarajan and her colleagues analyzed images of 11 massive galaxy clusters taken by the Hubble Space Telescope, which were supplemented by spectrographic measurements gathered by the European Southern Observatory’s Very Large Telescope (VLT). The Hubble data, in both visible and infrared light, was taken in 2011 by the telescope’s Advanced Camera for Survey and Wide Field Camera 3.

Advertisement
Hubble image of the lensing cluster MACS J1206. Inset image shows the spatial distribution of dark matter, with the spikes indicating individual galaxies.
Hubble image of the lensing cluster MACS J1206. Inset image shows the spatial distribution of dark matter, with the spikes indicating individual galaxies.
Image: NASA, ESA, G. Caminha (University of Groningen), M. Meneghetti (Observatory of Astrophysics and Space Science of Bologna), P. Natarajan (Yale University), and the CLASH team

Data from Hubble and VLT data allowed the researchers to visualize the dark matter. The 3D maps, with their hills, valleys, and exaggerated stalagmites, showed the spatial distribution of the halos. The stalagmites, or peaked regions, showed the location of dark-matter halos, or subhalos in this case, associated with individual galaxies located within a cluster.

Advertisement

The team, including first author Massimo Meneghetti, then took this high-fidelity data and compared it to theory-based computer simulations of clusters with similar masses and at comparable distances. The models did not match the astronomical data; the authors detected smaller lenses in the Hubble images compared to those produced by the simulations.

“There’s a feature of the real universe that we are simply not capturing in our current theoretical models,” explained Natarajan in a Yale press release. “This could signal a gap in our current understanding of the nature of dark matter and its properties, as this exquisite data has permitted us to probe the detailed distribution of dark matter on the smallest scales.”

Advertisement

Bob Jacobsen, a physicist as UC Berkeley who wasn’t involved in the new research, said the two maps—one produced by Hubble data and the other by current dark matter theories—look like they’re in conflict. Interestingly, he said the construction of both maps are “heavily reliant” on computation and simulations.

“This will add important pressure to improving and understanding those computational models and simulations,” explained Jacobsen in an email. “Solid measurements tend to do that. But we don’t yet know whether this is telling us something about our computations and simulations, or whether it’s telling us something fundamental about dark matter.”

Advertisement

Another researcher emphasized just how complex this cosmic science is.

“There are lots of missing pieces in our current understanding of dark matter,” said Esra Bulbul, an astrophysicist at Max Planck Institute for Extraterrestrial Physics who wasn’t involved with the new study. “Comparing state-of-the art simulations and testing current dark matter models with high-quality data, as presented in this work, bring us one step closer to solving this complicated puzzle.”

Advertisement

It’s a frustrating result, for sure, but it’s still a result. And as Jacobsen suggested, we have to get smarter about the whole thing. Solving the mystery of dark matter will require more observations of deep space and some effective number crunching. We just have to know which numbers to crunch.

Advertisement