Skip to main content

NASA video reveals complexity of Mars Sample Return mission

NASA has shared a video showing the complex series of steps required to bring the first samples of Mars rock to Earth.

The space agency’s Perseverance rover is currently drilling and caching samples from inside Mars’ Jezero Crater as part of a research effort to find out if microbial life ever existed on the red planet.

Mars Sample Return Conceptual Animation

At the end of its mission, Perseverance will set aside those samples in sealed containers for another mission to collect later this decade.

As the video shows, the Mars Sample Return mission, which will be carried out by NASA and ESA (European Space Agency), will involve multiple stages and multiple vehicles.

Here’s a brief summary of the plan:

  • First, a rocket will launch a spacecraft from Earth to Mars.
  • When it gets close, the spacecraft will send a lander to the martian surface.
  • The lander will set down a rover, which will collect the sealed samples of Mars rock gathered by Perseverance.
  • A small rocket will fire the gathered samples into Mars orbit, where they will be transferred to a waiting orbiter.
  • The orbiter will bring the Mars samples to Earth by launching them inside a capsule toward the end of its journey.

In an online post about the challenging mission, NASA says the team will have plenty of hurdles to overcome to successfully return the samples.

For example, it has to ensure the samples are securely sealed in order to prevent the material from becoming contaminated on its return journey, and to ensure it doesn’t contaminate Earth’s environment, although NASA says there’s a “low risk of bringing anything alive to Earth.”

It means engineers have to seal and sterilize the sample container without damaging important chemical signatures in the gathered material. The team is currently considering a method called brazing, which involves melting a metal alloy into a liquid that glues metal together.

“Among our biggest technical challenges right now is that inches away from metal that’s melting at about 1,000 degrees Fahrenheit (or 538 degrees Celsius) we have to keep these extraordinary Mars samples below the hottest temperature they might have experienced on Mars, which is about 86 degrees Fahrenheit (30 degrees Celsius),” said Brendan Feehan, an engineer for the system that will capture, contain, and deliver the samples to Earth aboard the orbiter. “Initial results from the testing of our brazing solution have affirmed that we’re on the right path.”

If successful, the technique could even be used for future sample-return missions to Europa (a moon orbiting Jupiter) or Enceladus (one of Saturn’s moons), “where we could collect and return fresh ocean plume samples that could contain living extraterrestrial organisms,” Feehan said, adding: “So we need to figure this out.”

There’s clearly still plenty of work to be done, but by 2030 a small capsule containing Mars samples could be hurtling toward Earth, providing scientists with many years’ worth of exciting research material.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
Final communications sent to the beloved Ingenuity Mars helicopter
NASA’s Ingenuity Mars helicopter is seen here in a close-up taken by Mastcam-Z, a pair of zoomable cameras aboard the Perseverance rover. This image was taken on April 5, the 45th Martian day, or sol, of the mission.

Earlier this year, the beloved Mars helicopter Ingenuity ended its mission after an incredible 72 flights. Originally designed as a technology test intended to perform just five flights, NASA's helicopter was the first rotorcraft to fly on another planet and was such a success that it has already inspired plans for more exploration of distant planets using rotorcraft. Its mission came to an end, however, when it damaged one of its rotors, leaving it unable to safely fly.

Even then, the helicopter was still able to communicate by sending signals to the nearby Perseverance rover, which acted as its base station. Now, though, Perseverance is traveling away from the helicopter to continue its exploration of Mars. So this week, the NASA team on the ground met for the last time to communicate with Ingenuity, bringing the mission to a final close.

Read more
NASA needs a new approach for its challenging Mars Sample Return mission
An illustration of NASA's Sample Return Lander shows it tossing a rocket in the air like a toy from the surface of Mars.

NASA has shared an update on its beleaguered Mars Sample Return mission, admitting that its previous plan was too ambitious and announcing that it will now be looking for new ideas to make the mission happen. The idea is to send a mission to collect samples from the surface of Mars and return them to Earth for study. It's been a long-term goal of planetary science researchers, but one that is proving costly and difficult to put into practice.

The Perseverance rover has already collected and sealed a number of samples of Mars rock as it journeys around the Jezero Crater, and has left these samples in a sample cache ready to be collected.  However, getting them back to Earth in the previous plan required sending a vehicle to Mars, getting it to land on the surface, sending out another rover to collect the samples and bring them back, launching a rocket from the planet's surface (something which has never been done before), and then having this rocket rendezvous with another spacecraft to carry them back to Earth. That level of complexity was just too much to be feasible within a reasonable budget, NASA Administrator Bill Nelson announced this week.

Read more
Junk from the ISS fell on a house in the U.S., NASA confirms
The International Space Station.

A regular stanchion (left) and the one recovered from the NASA flight support equipment used to mount International Space Station batteries on a cargo pallet. The recovered stanchion survived reentry through Earth’s atmosphere on March 8, 2024, and impacted a home in Florida. NASA

When Alejandro Otero’s son called him on March 8 to say that something had crashed through the roof of their home, he initially thought it might have been a meteorite.

Read more